Compare commits

..

32 Commits

Author SHA1 Message Date
Hazel Noack
54a2138746 stuff 2025-05-07 16:48:07 +02:00
Hazel Noack
37a5da37b0 changed deconvolution algorythm 2025-05-07 16:11:39 +02:00
Hazel Noack
edd8096030 feat: 2025-05-07 15:31:58 +02:00
Hazel Noack
d576f9979c feat: ui 2025-05-07 15:20:02 +02:00
Hazel Noack
f6a774a01f feat: generating kernel 2025-05-07 14:49:08 +02:00
Hazel Noack
6126e675f1 heatmaps 2025-05-07 13:46:27 +02:00
Hazel Noack
df4b949dd2 feat: further tests 2025-05-07 13:01:10 +02:00
Hazel Noack
6101a8d5e4 feat: deconvolution 2025-05-07 12:38:25 +02:00
Hazel Noack
b4c7512a73 feat: detect color edges 2025-05-07 12:02:54 +02:00
Hazel Noack
ed650dcc5d feat: added option to paint mask 2025-05-07 11:22:11 +02:00
Hazel Noack
aaa706264d feat: added links 2025-05-05 16:46:28 +02:00
Hazel Noack
8d6eecaf78 feat: speed up the code by huge difference 2025-05-05 16:44:47 +02:00
Hazel Noack
f23fd1cdb3 feat: 2d deblurr 2025-05-05 16:38:04 +02:00
Hazel Noack
2467b4788f feat: add test for deconvolution 2025-05-05 15:42:58 +02:00
8bd512a0a7 feat: added alternative inpainting 2025-04-24 17:06:54 +02:00
8fc56b887d feat: added alternative inpainting 2025-04-24 16:59:30 +02:00
edad12841f fix: some minor errors 2025-04-24 16:55:44 +02:00
5baefdcc6f feat: implemented correct lama bindings 2025-04-24 16:50:37 +02:00
eb00e869fc wip 2025-04-24 15:18:07 +02:00
94b641cbd6 wip 2025-04-24 15:15:46 +02:00
061cc20046 feat: added some stuff 2025-04-24 13:48:06 +02:00
8753e1e05f feat: added readme stuff 2025-04-24 11:59:03 +02:00
529e1af517 feat: added impaint 2025-04-24 11:52:38 +02:00
ad38eef03b feat: added proper pixelation 2025-04-24 11:46:45 +02:00
678aeab7a5 feat: implemented effective but non generative impainting 2025-04-24 11:41:46 +02:00
180b41ffa4 feat: blacking out 2025-04-24 11:33:28 +02:00
88180d035c feat: blacking out image 2025-04-24 11:26:17 +02:00
b88f9c22a3 feat: improved bounding box format 2025-04-24 11:21:31 +02:00
cb9e594837 feat: added steps dir 2025-04-24 11:00:54 +02:00
0895256dc4 fix: converting ndarray to list 2025-04-24 10:58:21 +02:00
ff2088c1d0 feat: writing bounding boxes 2025-04-24 10:53:40 +02:00
e104a8f45c feat: added bounding boxes to meta data 2025-04-24 10:52:12 +02:00
11 changed files with 951 additions and 7 deletions

2
.gitignore vendored
View File

@@ -162,3 +162,5 @@ cython_debug/
.venv .venv
assets/* assets/*
*.pt *.pt
big-lama

View File

@@ -12,8 +12,8 @@ I first realized that a normal mosaic algorithm isn't safe AT ALL seeing this pr
```bash ```bash
# Step 1: Create and activate virtual environment # Step 1: Create and activate virtual environment
python3 -m venv .venv python3.8 -m venv .venv
source venv/bin/activate source .venv/bin/activate
# Step 2: Install the local Python program add the -e flag for development # Step 2: Install the local Python program add the -e flag for development
pip install . pip install .
@@ -21,3 +21,21 @@ pip install .
# Step 3: Run the secure-pixelation command # Step 3: Run the secure-pixelation command
secure-pixelation secure-pixelation
``` ```
## Setup LaMa
This is the generative ai model to impaint the blacked out areas.
```
# get the pretrained models
mkdir -p ./big-lama
wget https://huggingface.co/smartywu/big-lama/resolve/main/big-lama.zip
unzip big-lama.zip -d ./big-lama
rm big-lama.zip
# get the code to run the models
cd big-lama
git clone https://github.com/advimman/lama.git
cd lama
pip install -r requirements.txt
```

57
deblur/deblur.py Normal file
View File

@@ -0,0 +1,57 @@
import numpy as np
import cv2
image = np.array([1, 3, 1, 2, 1, 6, 1], dtype=np.float32)
kernel = np.array([1, 2, 1], dtype=np.float32) / 4
blurred = np.convolve(image, kernel, mode="same")
print(image)
print(blurred)
print()
print("building linalg")
# https://numpy.org/doc/stable/reference/generated/numpy.linalg.solve.html
a = []
b = []
for i in range(len(blurred)):
y = blurred[i]
shift = i - 1
equation = np.zeros(len(image))
# Calculate valid range in the output array
start_eq = max(0, shift)
end_eq = min(len(image), shift + len(kernel))
# Corresponding range in the kernel
start_k = start_eq - shift # how much to cut from the beginning of the kernel
end_k = start_k + (end_eq - start_eq)
# Assign the clipped kernel segment
equation[start_eq:end_eq] = kernel[start_k:end_k]
a.append(equation)
b.append(y)
goal = image[i]
print(f"{i} ({goal}): {y} = {equation}")
print()
print("deblurring")
deblurred = np.linalg.solve(a, b)
print(deblurred)
def show_matrix(m):
# Resize the image to make it visible (e.g., scale up to 200x200 pixels)
scaled_image = cv2.resize(m, (200, 200), interpolation=cv2.INTER_NEAREST)
# Display the image
cv2.imshow('Test Matrix', scaled_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

419
deblur/deblur_2d.py Normal file
View File

@@ -0,0 +1,419 @@
import numpy as np
from scipy.signal import convolve2d
from scipy.sparse import lil_matrix
from scipy.sparse.linalg import spsolve
from scipy.optimize import curve_fit
import cv2
import matplotlib
import matplotlib.pyplot as plt
from pathlib import Path
from scipy.ndimage import correlate
from skimage.restoration import richardson_lucy
import os
matplotlib.use('qtagg')
"""
https://setosa.io/ev/image-kernels/
https://openaccess.thecvf.com/content/CVPR2021/papers/Tran_Explore_Image_Deblurring_via_Encoded_Blur_Kernel_Space_CVPR_2021_paper.pdf
"""
def show(img):
cv2.imshow('image',img.astype(np.uint8))
cv2.waitKey(0)
cv2.destroyAllWindows()
def demo(image_file):
# Define 2D image and kernel
image = cv2.imread(image_file, 0)
image = cv2.resize(image, (200, 200), interpolation= cv2.INTER_LINEAR)
kernel = np.array([
[1, 2, 1],
[2, 4, 2],
[1, 2, 1]
], dtype=np.float32)
kernel /= kernel.sum() # Normalize
print(kernel)
# Perform 2D convolution (blurring)
blurred = convolve2d(image, kernel, mode="same", boundary="fill", fillvalue=0)
h, w = image.shape
kh, kw = kernel.shape
pad_h, pad_w = kh // 2, kw // 2
show(image)
show(blurred)
print("Original image:\n", image)
print("\nBlurred image:\n", blurred)
print("\nBuilding linear system for deconvolution...")
# Step 2: Build sparse matrix A
N = h * w
A = lil_matrix((N, N), dtype=np.float32)
b = blurred.flatten()
def index(y, x):
return y * w + x
for y in range(h):
for x in range(w):
row_idx = index(y, x)
for ky in range(kh):
for kx in range(kw):
iy = y + ky - pad_h
ix = x + kx - pad_w
if 0 <= iy < h and 0 <= ix < w:
col_idx = index(iy, ix)
A[row_idx, col_idx] += kernel[ky, kx]
# Step 3: Solve the sparse system A * x = b
x = spsolve(A.tocsr(), b)
deblurred = x.reshape((h, w))
print("\nDeblurred image:\n", np.round(deblurred, 2))
show(deblurred)
def get_mask(image_file):
mask_file = Path(image_file)
mask_file = mask_file.with_name("mask_" + mask_file.name)
if mask_file.exists():
return cv2.imread(str(mask_file), 0)
drawing = False # True when mouse is pressed
brush_size = 5
image = cv2.imread(image_file)
mask = np.zeros(image.shape[:2], dtype=np.uint8)
clone = image.copy()
def draw_mask(event, x, y, flags, param):
nonlocal drawing, mask, brush_size
if event == cv2.EVENT_LBUTTONDOWN:
drawing = True
elif event == cv2.EVENT_MOUSEMOVE:
if drawing:
cv2.circle(mask, (x, y), brush_size, 255, -1)
cv2.circle(image, (x, y), brush_size, (0, 0, 255), -1)
elif event == cv2.EVENT_LBUTTONUP:
drawing = False
cv2.namedWindow("Draw Mask")
cv2.setMouseCallback("Draw Mask", draw_mask)
while True:
display = image.copy()
cv2.putText(display, f'Brush size: {brush_size}', (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0,255,0), 2)
cv2.imshow("Draw Mask", display)
key = cv2.waitKey(1) & 0xFF
if key == 13: # Enter to finish
break
elif key == ord('+') or key == ord('='): # `=` for some keyboard layouts
brush_size = min(100, brush_size + 1)
elif key == ord('-') or key == ord('_'):
brush_size = max(1, brush_size - 1)
cv2.destroyAllWindows()
cv2.imwrite(str(mask_file), mask)
# Apply mask
masked_image = cv2.bitwise_and(clone, clone, mask=mask)
cv2.imshow("Masked Image", masked_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
def color_edge_detection(image, threshold=30):
img_lab = cv2.cvtColor(image, cv2.COLOR_BGR2Lab)
L, A, B = cv2.split(img_lab)
def gradient_magnitude(channel):
gx = cv2.Sobel(channel, cv2.CV_64F, 1, 0, ksize=3)
gy = cv2.Sobel(channel, cv2.CV_64F, 0, 1, ksize=3)
return gx, gy
gxL, gyL = gradient_magnitude(L)
gxA, gyA = gradient_magnitude(A)
gxB, gyB = gradient_magnitude(B)
gx_total = gxL**2 + gxA**2 + gxB**2
gy_total = gyL**2 + gyA**2 + gyB**2
magnitude = np.sqrt(gx_total + gy_total)
magnitude = cv2.normalize(magnitude, None, 0, 255, cv2.NORM_MINMAX)
edges = (magnitude > threshold).astype(np.uint8) * 255
return edges, magnitude
# === Step 2: Extract Vertical Profile ===
def extract_vertical_profile(image, center_x, center_y, length=21):
half_len = length // 2
y_range = np.clip(np.arange(center_y - half_len, center_y + half_len + 1), 0, image.shape[0] - 1)
profile = image[y_range, center_x].astype(np.float64)
profile -= profile.min()
if profile.max() > 0:
profile /= profile.max()
return profile, y_range - center_y # profile, x-axis
# === Step 3: Fit Gaussian ===
def gaussian(x, amp, mu, sigma):
return amp * np.exp(-(x - mu)**2 / (2 * sigma**2))
def fit_gaussian(profile, x_vals):
p0 = [1.0, 0.0, 2.0] # initial guess: amp, mu, sigma
popt, _ = curve_fit(gaussian, x_vals, profile, p0=p0)
return popt # amp, mu, sigma
# === Step 4: Create Gaussian Kernel ===
def create_gaussian_kernel(sigma):
ksize = int(sigma * 6) | 1 # ensure odd size
kernel_1d = cv2.getGaussianKernel(ksize, sigma)
kernel_2d = kernel_1d @ kernel_1d.T
return kernel_2d
def kernel_detection(blurred, mask, edge_threshold=30, profile_length=21):
edges, gradient_mag = color_edge_detection(blurred, threshold=edge_threshold)
edges = cv2.bitwise_and(edges, edges, mask=mask)
# show(edges)
# Find central edge pixel
y_idxs, x_idxs = np.where(edges > 0)
if len(x_idxs) == 0:
raise RuntimeError("No edges found.")
idx = len(x_idxs) // 2
cx, cy = x_idxs[idx], y_idxs[idx]
gray = cv2.cvtColor(blurred, cv2.COLOR_BGR2GRAY)
profile, x_vals = extract_vertical_profile(gray, cx, cy, length=profile_length)
popt = fit_gaussian(profile, x_vals)
amp, mu, sigma = popt
print(f"Estimated Gaussian sigma: {sigma:.2f}")
kernel = create_gaussian_kernel(sigma)
# print(kernel)
return kernel / kernel.sum()
def kernel_detection_box(blurred, mask, edge_threshold=30, profile_length=21):
def box_function(x, amp, center, width):
"""Simple box profile: flat region with sharp transitions."""
return amp * ((x >= (center - width / 2)) & (x <= (center + width / 2))).astype(float)
def fit_box(profile, x_vals):
# Initial guess: full amplitude, centered at 0, small width
p0 = [1.0, 0.0, 5.0]
bounds = ([0, -10, 1], [1.5, 10, len(x_vals)]) # reasonable bounds
popt, _ = curve_fit(box_function, x_vals, profile, p0=p0, bounds=bounds)
return popt # amp, center, width
def create_box_kernel(width):
"""Generate a normalized 2D box kernel."""
ksize = int(round(width))
if ksize < 1:
ksize = 1
if ksize % 2 == 0:
ksize += 1 # ensure odd size
kernel = np.ones((ksize, ksize), dtype=np.float32)
return kernel / kernel.sum()
edges, gradient_mag = color_edge_detection(blurred, threshold=edge_threshold)
edges = cv2.bitwise_and(edges, edges, mask=mask)
y_idxs, x_idxs = np.where(edges > 0)
if len(x_idxs) == 0:
raise RuntimeError("No edges found.")
idx = len(x_idxs) // 2
cx, cy = x_idxs[idx], y_idxs[idx]
gray = cv2.cvtColor(blurred, cv2.COLOR_BGR2GRAY)
profile, x_vals = extract_vertical_profile(gray, cx, cy, length=profile_length)
popt = fit_box(profile, x_vals)
amp, mu, width = popt
print(f"Estimated box width: {width:.2f} pixels")
kernel = create_box_kernel(width)
return kernel
def deconvolution(image_file, edge_threshold=30, profile_length=21):
image = cv2.imread(image_file)
mask = get_mask(image_file)
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB).astype(np.float32) / 255.0
kernel = kernel_detection_box(image, mask, edge_threshold=edge_threshold, profile_length=profile_length)
# Apply Richardson-Lucy to each channel
num_iter = 30
deblurred_channels = []
for i in range(3): # R, G, B
channel = image_rgb[..., i]
deconv = richardson_lucy(channel, kernel, num_iter=num_iter)
deblurred_channels.append(deconv)
# Stack back into an RGB image
deblurred_rgb = np.stack(deblurred_channels, axis=2)
deblurred_rgb = np.clip(deblurred_rgb, 0, 1)
# Show result
plt.figure(figsize=(10, 5))
plt.subplot(1, 2, 1)
plt.imshow(image_rgb)
plt.title("Blurred Image")
plt.axis('off')
plt.subplot(1, 2, 2)
plt.imshow(deblurred_rgb)
plt.title("Deconvolved Image")
plt.axis('off')
plt.show()
def sharpness_heatmap(image, block_size=32, threshold=30):
"""
Compute a sharpness heatmap using color-aware Laplacian variance over blocks,
generate a binary mask highlighting blurred areas, and smooth the edges of the mask.
Args:
image: BGR or RGB image (NumPy array).
block_size: Size of the square block to compute sharpness.
sigma: Standard deviation for Gaussian smoothing of the heatmap.
threshold: Sharpness threshold to define blurred regions (between 0 and 1).
smoothing_sigma: Standard deviation for Gaussian smoothing of the binary mask edges.
Returns:
blurred_mask: Binary mask highlighting blurred areas (0 = sharp, 255 = blurred).
"""
if image.ndim != 3 or image.shape[2] != 3:
raise ValueError("Input must be a color image (3 channels)")
h, w, _ = image.shape
heatmap = np.zeros((h // block_size, w // block_size))
# Calculate sharpness for each block
for y in range(0, h - block_size + 1, block_size):
for x in range(0, w - block_size + 1, block_size):
block = image[y:y + block_size, x:x + block_size, :]
sharpness_vals = []
for c in range(3): # For R, G, B channels
channel = block[..., c]
lap_var = cv2.Laplacian(channel, cv2.CV_64F).var()
sharpness_vals.append(lap_var)
# Use average sharpness across color channels
heatmap[y // block_size, x // block_size] = np.mean(sharpness_vals)
print(heatmap)
# Threshold the heatmap to create a binary mask (blurred regions)
mask = heatmap < threshold
mask = (mask * 255).astype(np.uint8) # Convert to binary mask (0, 255)
# Display Heatmap
plt.subplot(1, 2, 1)
plt.imshow(heatmap, cmap='hot', interpolation='nearest')
plt.title("Sharpness Heatmap")
plt.colorbar(label='Sharpness')
# Display Smoothed Mask
plt.subplot(1, 2, 2)
plt.imshow(mask, cmap='gray', interpolation='nearest')
plt.title("Smoothed Mask for Blurred Areas")
plt.colorbar(label='Blurred Mask')
plt.tight_layout()
plt.show()
return smoothed_mask
def graininess_heatmap(image, block_size=32, threshold=100):
"""
Compute a graininess heatmap using local variance (texture/noise) over blocks.
No smoothing or blurring is applied.
Args:
image: BGR or RGB image (NumPy array).
block_size: Size of the square block to compute variance (graininess).
Returns:
graininess_map: Heatmap highlighting the graininess (texture/noise) in the image.
"""
if image.ndim != 3 or image.shape[2] != 3:
raise ValueError("Input must be a color image (3 channels)")
h, w, _ = image.shape
graininess_map = np.zeros((h // block_size, w // block_size))
# Calculate variance for each block
for y in range(0, h - block_size + 1, block_size):
for x in range(0, w - block_size + 1, block_size):
block = image[y:y + block_size, x:x + block_size, :]
variance_vals = []
for c in range(3): # For R, G, B channels
channel = block[..., c]
variance = np.var(channel)
variance_vals.append(variance)
# Use average variance across color channels for graininess
graininess_map[y // block_size, x // block_size] = np.mean(variance_vals)
mask = graininess_map < threshold
mask = (mask * 255).astype(np.uint8) # Convert to binary mask (0, 255)
# Display graininess_map
plt.subplot(1, 2, 1)
plt.imshow(graininess_map, cmap='hot', interpolation='nearest')
plt.title("Graininess Heatmap")
plt.colorbar(label='Graininess')
# Display Smoothed Mask
plt.subplot(1, 2, 2)
plt.imshow(mask, cmap='gray', interpolation='nearest')
plt.title("Mask for Blurred Areas")
plt.colorbar(label='Blurred Mask')
plt.tight_layout()
plt.show()
return graininess_map
if __name__ == "__main__":
img_file = "assets/real_test.jpg"
#demo("assets/omas.png")
# deconvolution(img_file, edge_threshold=5)
image = cv2.imread(img_file)
test = graininess_heatmap(image)
heatmap = sharpness_heatmap(image)

251
deblur/symetric_kernel.py Normal file
View File

@@ -0,0 +1,251 @@
import sys
import numpy as np
import cv2
from PyQt5.QtWidgets import (
QApplication, QWidget, QLabel, QSlider, QVBoxLayout,
QHBoxLayout, QGridLayout, QPushButton, QFileDialog
)
from PyQt5.QtCore import Qt
from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas
from matplotlib.figure import Figure
import scipy.signal
from scipy.signal import convolve2d
import os
os.environ.pop("QT_QPA_PLATFORM_PLUGIN_PATH", None)
def generate_box_kernel(size):
return np.ones((size, size), dtype=np.float32) / (size * size)
def generate_disk_kernel(radius):
size = 2 * radius + 1
y, x = np.ogrid[-radius:radius+1, -radius:radius+1]
mask = x**2 + y**2 <= radius**2
kernel = np.zeros((size, size), dtype=np.float32)
kernel[mask] = 1
kernel /= kernel.sum()
return kernel
def generate_kernel(radius, sigma=None):
"""
Generate a 2D Gaussian kernel with a given radius.
Parameters:
- radius: int, the radius of the kernel (size will be 2*radius + 1)
- sigma: float (optional), standard deviation of the Gaussian. If None, sigma = radius / 3
Returns:
- kernel: 2D numpy array of shape (2*radius+1, 2*radius+1)
"""
size = 2 * radius + 1
if sigma is None:
sigma = radius / 3.0 # Common default choice
print(f"radius: {radius}, sigma: {sigma}")
# Create a grid of (x,y) coordinates
ax = np.arange(-radius, radius + 1)
xx, yy = np.meshgrid(ax, ax)
# Apply the 2D Gaussian formula
kernel = np.exp(-(xx**2 + yy**2) / (2 * sigma**2))
kernel /= 2 * np.pi * sigma**2 # Normalize based on Gaussian PDF
kernel /= kernel.sum() # Normalize to sum to 1
return kernel
def wiener_deconvolution(blurred, kernel, K=0.1):
"""
Perform Wiener deconvolution on a 2D image.
Parameters:
- blurred: 2D numpy array (blurred image)
- kernel: 2D numpy array (PSF / blur kernel)
- K: float, estimated noise-to-signal ratio
Returns:
- deconvolved: 2D numpy array (deblurred image)
"""
# Pad kernel to image size
kernel /= np.sum(kernel)
pad = [(0, blurred.shape[0] - kernel.shape[0]),
(0, blurred.shape[1] - kernel.shape[1])]
kernel_padded = np.pad(kernel, pad, 'constant')
# FFT of image and kernel
H = np.fft.fft2(kernel_padded)
G = np.fft.fft2(blurred)
# Avoid division by zero
H_conj = np.conj(H)
denominator = H_conj * H + K
F_hat = H_conj / denominator * G
# Inverse FFT to get result
deconvolved = np.fft.ifft2(F_hat)
deconvolved = np.abs(deconvolved)
deconvolved = np.clip(deconvolved, 0, 255)
return deconvolved.astype(np.uint8)
def richardson_lucy(image, psf, iterations=30, clip=True):
image = image.astype(np.float32) + 1e-6
psf = psf / psf.sum()
estimate = np.full(image.shape, 0.5, dtype=np.float32)
psf_mirror = psf[::-1, ::-1]
for _ in range(iterations):
conv = convolve2d(estimate, psf, mode='same', boundary='wrap')
relative_blur = image / (conv + 1e-6)
estimate *= convolve2d(relative_blur, psf_mirror, mode='same', boundary='wrap')
if clip:
estimate = np.clip(estimate, 0, 255)
return estimate
class KernelVisualizer(QWidget):
def __init__(self, image_path=None):
super().__init__()
self.setWindowTitle("Gaussian Kernel Visualizer")
self.image = None
self.deconvolved = None
self.load_button = QPushButton("Load Image")
self.load_button.clicked.connect(self.load_image)
self.radius_slider = QSlider(Qt.Horizontal)
self.radius_slider.setRange(1, 100)
self.radius_slider.setValue(5)
self.sigma_slider = QSlider(Qt.Horizontal)
self.sigma_slider.setRange(1, 300)
self.sigma_slider.setValue(15)
self.radius_slider.valueChanged.connect(self.update_visualization)
self.sigma_slider.valueChanged.connect(self.update_visualization)
self.kernel_fig = Figure(figsize=(3, 3))
self.kernel_canvas = FigureCanvas(self.kernel_fig)
self.image_fig = Figure(figsize=(6, 3))
self.image_canvas = FigureCanvas(self.image_fig)
self.iter_slider = QSlider(Qt.Horizontal)
self.iter_slider.setRange(1, 50)
self.iter_slider.setValue(10)
self.apply_button = QPushButton("Do Deconvolution.")
self.apply_button.clicked.connect(self.apply_kernel)
layout = QVBoxLayout()
layout.addWidget(self.load_button)
sliders_layout = QGridLayout()
sliders_layout.addWidget(QLabel("Radius:"), 0, 0)
sliders_layout.addWidget(self.radius_slider, 0, 1)
sliders_layout.addWidget(QLabel("Sigma:"), 1, 0)
sliders_layout.addWidget(self.sigma_slider, 1, 1)
sliders_layout.addWidget(QLabel("Iterations:"), 2, 0)
sliders_layout.addWidget(self.iter_slider, 2, 1)
sliders_layout.addWidget(self.apply_button, 3, 1)
layout.addLayout(sliders_layout)
layout.addWidget(QLabel("Kernel Visualization:"))
layout.addWidget(self.kernel_canvas)
layout.addWidget(QLabel("Original and Deconvolved Image:"))
layout.addWidget(self.image_canvas)
self.setLayout(layout)
if image_path:
self.load_image(image_path)
else:
self.update_visualization()
def load_image(self, image_path=None):
if not image_path:
fname, _ = QFileDialog.getOpenFileName(self, "Open Image", "", "Images (*.png *.jpg *.bmp *.jpeg)")
image_path = fname
if image_path:
img = cv2.imread(image_path)
if img is not None:
self.image = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
self.update_visualization()
def load_image(self, image_path=None):
if not image_path:
fname, _ = QFileDialog.getOpenFileName(self, "Open Image", "", "Images (*.png *.jpg *.bmp *.jpeg)")
image_path = fname
if image_path:
img = cv2.imread(image_path)
if img is not None:
self.image = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
self.image = cv2.resize(self.image, (200, 200))
self.update_visualization()
def apply_kernel(self):
radius = self.radius_slider.value()
sigma = self.sigma_slider.value() / 10.0
iterations = self.iter_slider.value()
kernel = generate_kernel(radius, sigma)
self.deconvolved = richardson_lucy(self.image, kernel, iterations=iterations)
self.update_visualization()
def update_visualization(self):
radius = self.radius_slider.value()
sigma = self.sigma_slider.value() / 10.0 * (radius / 3)
kernel = generate_kernel(radius, sigma)
iterations = self.iter_slider.value()
# Kernel Visualization
self.kernel_fig.clear()
ax = self.kernel_fig.add_subplot(111)
cax = ax.imshow(kernel, cmap='hot')
self.kernel_fig.colorbar(cax, ax=ax)
ax.set_title(f"Kernel (r={radius}, σ={sigma:.2f})")
self.kernel_canvas.draw()
if self.image is not None:
self.image_fig.clear()
ax1 = self.image_fig.add_subplot(131)
ax1.imshow(self.image, cmap='gray')
ax1.set_title("Original")
ax1.axis('off')
if self.deconvolved is not None:
ax3 = self.image_fig.add_subplot(133)
ax3.imshow(self.deconvolved, cmap='gray')
ax3.set_title(f"Deconvolved (RL, {iterations} iter)")
ax3.axis('off')
self.image_canvas.draw()
else:
self.image_fig.clear()
ax = self.image_fig.add_subplot(111)
ax.text(0.5, 0.5, "No image loaded", fontsize=14, ha='center', va='center')
ax.axis('off')
self.image_canvas.draw()
if __name__ == "__main__":
image_path = None
if len(sys.argv) > 1:
image_path = sys.argv[1] # Get image path from command-line argument
print(image_path)
app = QApplication(sys.argv)
viewer = KernelVisualizer(image_path=image_path)
viewer.show()
sys.exit(app.exec_())

View File

@@ -2,7 +2,14 @@
name = "secure_pixelation" name = "secure_pixelation"
version = "0.0.0" version = "0.0.0"
dependencies = [ dependencies = [
"torch==2.1.2",
"torchvision==0.16.2",
"opencv_python~=4.11.0.86", "opencv_python~=4.11.0.86",
"numpy<2.0.0",
"hf_transfer==0.1.8",
"huggingface_hub==0.25.1",
"ultralytics~=8.3.114", "ultralytics~=8.3.114",
] ]
authors = [] authors = []

View File

@@ -1,7 +1,10 @@
from .get_bounding_boxes import select_bounding_boxes from .get_bounding_boxes import select_bounding_boxes
from .pixelation_process import pixelate
def cli(): def cli():
print(f"Running secure_pixelation") print(f"Running secure_pixelation")
select_bounding_boxes("assets/human_detection/test.png") pixelate("assets/human_detection/test.png", generative_impaint=True)
pixelate("assets/human_detection/humans.png", generative_impaint=False)
pixelate("assets/human_detection/rev1.png", generative_impaint=False)

View File

@@ -1,6 +1,6 @@
from __future__ import annotations from __future__ import annotations
from typing import Union from typing import Union, List, Tuple
from pathlib import Path from pathlib import Path
import json import json
@@ -15,6 +15,7 @@ class RawImage:
self.meta_file = self._get_path("boxes.json") self.meta_file = self._get_path("boxes.json")
self.meta_data = self.read_meta() self.meta_data = self.read_meta()
self.image = self.get_image() self.image = self.get_image()
def _get_path(self, ending: str, original_suffix: bool = False) -> Path: def _get_path(self, ending: str, original_suffix: bool = False) -> Path:
@@ -23,6 +24,11 @@ class RawImage:
else: else:
return self.file.with_name(self.file.stem + "_" + ending) return self.file.with_name(self.file.stem + "_" + ending)
def get_dir(self, name: str) -> Path:
p = self._get_path(ending=name, original_suffix=False)
p.mkdir(exist_ok=True, parents=True)
return p
def read_meta(self) -> dict: def read_meta(self) -> dict:
if not self.meta_file.exists(): if not self.meta_file.exists():
return {} return {}
@@ -37,3 +43,11 @@ class RawImage:
def get_image(self) -> np.ndarray: def get_image(self) -> np.ndarray:
return cv2.imread(str(self.file)) return cv2.imread(str(self.file))
@property
def bounding_boxes(self) -> List[List[int]]:
_key = "bounding_boxes"
if _key not in self.meta_data:
self.meta_data[_key] = []
return self.meta_data[_key]

View File

@@ -18,4 +18,5 @@ def select_bounding_boxes(to_detect: str):
fromCenter=False fromCenter=False
) )
print(bounding_boxes) raw_image.bounding_boxes.extend(bounding_boxes.tolist())
raw_image.write_meta()

View File

@@ -0,0 +1,95 @@
from __future__ import annotations
from typing import Optional
from pathlib import Path
import subprocess
import sys
import os
import cv2
import numpy as np
from .data_classes import RawImage
from .simple_lama_bindings import SimpleLama
# https://github.com/okaris/simple-lama/tree/main
def blackout(raw_image: RawImage) -> np.ndarray:
image = raw_image.get_image()
for box in raw_image.bounding_boxes:
cv2.rectangle(image, box, (0, 0, 0), -1)
return image
def get_mask(raw_image: RawImage) -> np.ndarray:
mask = np.zeros(raw_image.image.shape[:2], dtype=np.uint8)
for (x, y, w, h) in raw_image.bounding_boxes:
mask[y:y+h, x:x+w] = 255
return mask
def quick_impaint(raw_image: RawImage, image: Optional[np.ndarray] = None) -> np.ndarray:
image = image if image is not None else raw_image.get_image()
mask = get_mask(raw_image)
# Apply inpainting using the Telea method
return cv2.inpaint(image, mask, inpaintRadius=3, flags=cv2.INPAINT_TELEA)
def do_generative_impaint(raw_image: RawImage, image: Optional[np.ndarray] = None) -> np.ndarray:
image = image if image is not None else raw_image.get_image()
mask = get_mask(raw_image)
lama = SimpleLama()
return lama(image=image, mask=mask)
def pixelate_regions(raw_image: RawImage, image: Optional[np.ndarray] = None, pixel_size: int = 10) -> np.ndarray:
image = image.copy() if image is not None else raw_image.get_image().copy()
for (x, y, w, h) in raw_image.bounding_boxes:
roi = image[y:y+h, x:x+w]
# Resize down and then back up
temp = cv2.resize(roi, (max(1, w // pixel_size), max(1, h // pixel_size)), interpolation=cv2.INTER_LINEAR)
pixelated = cv2.resize(temp, (w, h), interpolation=cv2.INTER_NEAREST)
image[y:y+h, x:x+w] = pixelated
return image
def pixelate(to_detect: str, generative_impaint: bool = True, debug_drawings: bool = False):
raw_image = RawImage(to_detect)
step_dir = raw_image.get_dir("steps")
def write_image(image: np.ndarray, name: str):
nonlocal debug_drawings
f = str(step_dir / (name + raw_image.file.suffix))
if debug_drawings:
for box in raw_image.bounding_boxes:
cv2.rectangle(image, box, (0, 255, 255), 1)
cv2.imwrite(f, image)
write_image(raw_image.image, "step_0")
step_1 = blackout(raw_image)
write_image(step_1, "step_1")
if generative_impaint:
step_2 = do_generative_impaint(raw_image, image=step_1)
step_2_alt = quick_impaint(raw_image, image=step_1)
else:
step_2 = quick_impaint(raw_image, image=step_1)
step_2_alt = do_generative_impaint(raw_image, image=step_1)
write_image(step_2, "step_2")
write_image(step_2_alt, "step_2_alt")
step_3 = pixelate_regions(raw_image, image=step_2)
write_image(step_3, "step_3")

View File

@@ -0,0 +1,77 @@
import os
from typing import Tuple
import torch
import cv2
import numpy as np
from huggingface_hub import hf_hub_download
# https://github.com/okaris/simple-lama/blob/main/src/simple_lama/simple_lama.py
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
def prepare_img_and_mask(image: np.ndarray, mask: np.ndarray, device: torch.device, pad_out_to_modulo: int = 8, scale_factor: float = 1) -> Tuple[torch.Tensor, torch.Tensor]:
def get_image(img: np.ndarray):
img = img.copy()
if img.ndim == 3:
img = np.transpose(img, (2, 0, 1)) # chw
elif img.ndim == 2:
img = img[np.newaxis, ...]
return img.astype(np.float32) / 255
def scale_image(img: np.ndarray, factor: float, interpolation=cv2.INTER_AREA) -> np.ndarray:
if img.shape[0] == 1:
img = img[0]
else:
img = np.transpose(img, (1, 2, 0))
img = cv2.resize(img, dsize=None, fx=factor, fy=factor, interpolation=interpolation)
return img[None, ...] if img.ndim == 2 else np.transpose(img, (2, 0, 1))
def pad_img_to_modulo(img, mod):
channels, height, width = img.shape
out_height = height if height % mod == 0 else ((height // mod + 1) * mod)
out_width = width if width % mod == 0 else ((width // mod + 1) * mod)
return np.pad(img, ((0, 0), (0, out_height - height), (0, out_width - width)), mode="symmetric")
out_image = get_image(image)
out_mask = get_image(mask)
if scale_factor != 1:
out_image = scale_image(out_image, scale_factor)
out_mask = scale_image(out_mask, scale_factor, interpolation=cv2.INTER_NEAREST)
if pad_out_to_modulo > 1:
out_image = pad_img_to_modulo(out_image, pad_out_to_modulo)
out_mask = pad_img_to_modulo(out_mask, pad_out_to_modulo)
out_image = torch.from_numpy(out_image).unsqueeze(0).to(device)
out_mask = torch.from_numpy(out_mask).unsqueeze(0).to(device)
return out_image, (out_mask > 0) * 1
class SimpleLama:
"""
lama = SimpleLama()
result = lama(image, mask)
"""
def __init__(self, device=None):
self.device = device or torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {self.device}")
model_path = hf_hub_download("okaris/simple-lama", "big-lama.pt")
print(f"using model at {model_path}")
self.model = torch.jit.load(model_path, map_location=self.device).eval()
def __call__(self, image: np.ndarray, mask: np.ndarray) -> np.ndarray:
image, mask = prepare_img_and_mask(image, mask, self.device)
with torch.inference_mode():
inpainted = self.model(image, mask)
cur_res = inpainted[0].permute(1, 2, 0).detach().cpu().numpy()
return np.clip(cur_res * 255, 0, 255).astype(np.uint8)