generated from Hazel/python-project
feat: deconvolution
This commit is contained in:
parent
b4c7512a73
commit
6101a8d5e4
@ -2,12 +2,18 @@ import numpy as np
|
||||
from scipy.signal import convolve2d
|
||||
from scipy.sparse import lil_matrix
|
||||
from scipy.sparse.linalg import spsolve
|
||||
from scipy.optimize import curve_fit
|
||||
import cv2
|
||||
import matplotlib
|
||||
import matplotlib.pyplot as plt
|
||||
from pathlib import Path
|
||||
from scipy.ndimage import correlate
|
||||
from skimage.restoration import richardson_lucy
|
||||
import os
|
||||
|
||||
|
||||
matplotlib.use('qtagg')
|
||||
|
||||
"""
|
||||
https://setosa.io/ev/image-kernels/
|
||||
https://openaccess.thecvf.com/content/CVPR2021/papers/Tran_Explore_Image_Deblurring_via_Encoded_Blur_Kernel_Space_CVPR_2021_paper.pdf
|
||||
@ -132,14 +138,10 @@ def get_mask(image_file):
|
||||
|
||||
|
||||
|
||||
def color_edge_detection(img, threshold=30):
|
||||
# Load image
|
||||
img_lab = cv2.cvtColor(img, cv2.COLOR_BGR2Lab)
|
||||
|
||||
# Split Lab channels
|
||||
def color_edge_detection(image, threshold=30):
|
||||
img_lab = cv2.cvtColor(image, cv2.COLOR_BGR2Lab)
|
||||
L, A, B = cv2.split(img_lab)
|
||||
|
||||
# Compute gradients using Sobel for each channel
|
||||
def gradient_magnitude(channel):
|
||||
gx = cv2.Sobel(channel, cv2.CV_64F, 1, 0, ksize=3)
|
||||
gy = cv2.Sobel(channel, cv2.CV_64F, 0, 1, ksize=3)
|
||||
@ -149,28 +151,100 @@ def color_edge_detection(img, threshold=30):
|
||||
gxA, gyA = gradient_magnitude(A)
|
||||
gxB, gyB = gradient_magnitude(B)
|
||||
|
||||
# Combine gradients across channels
|
||||
gx_total = gxL**2 + gxA**2 + gxB**2
|
||||
gy_total = gyL**2 + gyA**2 + gyB**2
|
||||
magnitude = np.sqrt(gx_total + gy_total)
|
||||
|
||||
# Normalize and threshold
|
||||
magnitude = cv2.normalize(magnitude, None, 0, 255, cv2.NORM_MINMAX)
|
||||
edges = (magnitude > threshold).astype(np.uint8) * 255
|
||||
return edges, magnitude
|
||||
|
||||
return edges
|
||||
|
||||
# === Step 2: Extract Vertical Profile ===
|
||||
def extract_vertical_profile(image, center_x, center_y, length=21):
|
||||
half_len = length // 2
|
||||
y_range = np.clip(np.arange(center_y - half_len, center_y + half_len + 1), 0, image.shape[0] - 1)
|
||||
profile = image[y_range, center_x].astype(np.float64)
|
||||
profile -= profile.min()
|
||||
if profile.max() > 0:
|
||||
profile /= profile.max()
|
||||
return profile, y_range - center_y # profile, x-axis
|
||||
|
||||
# === Step 3: Fit Gaussian ===
|
||||
def gaussian(x, amp, mu, sigma):
|
||||
return amp * np.exp(-(x - mu)**2 / (2 * sigma**2))
|
||||
|
||||
def fit_gaussian(profile, x_vals):
|
||||
p0 = [1.0, 0.0, 2.0] # initial guess: amp, mu, sigma
|
||||
popt, _ = curve_fit(gaussian, x_vals, profile, p0=p0)
|
||||
return popt # amp, mu, sigma
|
||||
|
||||
# === Step 4: Create Gaussian Kernel ===
|
||||
def create_gaussian_kernel(sigma):
|
||||
ksize = int(sigma * 6) | 1 # ensure odd size
|
||||
kernel_1d = cv2.getGaussianKernel(ksize, sigma)
|
||||
kernel_2d = kernel_1d @ kernel_1d.T
|
||||
return kernel_2d
|
||||
|
||||
|
||||
def kernel_detection(blurred, mask, edge_threshold=30, profile_length=21):
|
||||
edges, gradient_mag = color_edge_detection(blurred, threshold=edge_threshold)
|
||||
edges = cv2.bitwise_and(edges, edges, mask=mask)
|
||||
# show(edges)
|
||||
|
||||
|
||||
# Find central edge pixel
|
||||
y_idxs, x_idxs = np.where(edges > 0)
|
||||
if len(x_idxs) == 0:
|
||||
raise RuntimeError("No edges found.")
|
||||
idx = len(x_idxs) // 2
|
||||
cx, cy = x_idxs[idx], y_idxs[idx]
|
||||
|
||||
gray = cv2.cvtColor(blurred, cv2.COLOR_BGR2GRAY)
|
||||
profile, x_vals = extract_vertical_profile(gray, cx, cy, length=profile_length)
|
||||
popt = fit_gaussian(profile, x_vals)
|
||||
amp, mu, sigma = popt
|
||||
|
||||
print(f"Estimated Gaussian sigma: {sigma:.2f}")
|
||||
|
||||
kernel = create_gaussian_kernel(sigma)
|
||||
|
||||
print(kernel)
|
||||
|
||||
return kernel / kernel.sum()
|
||||
|
||||
|
||||
|
||||
def deconvolution(image_file):
|
||||
|
||||
def deconvolution(image_file, edge_threshold=30, profile_length=21):
|
||||
blurred = cv2.imread(image_file)
|
||||
# blurred = cv2.resize(blurred, (200, 200), interpolation= cv2.INTER_LINEAR)
|
||||
mask = get_mask(image_file)
|
||||
|
||||
edges = color_edge_detection(blurred, threshold=8)
|
||||
# edges = cv2.bitwise_and(edges, edges, mask=mask)
|
||||
show(edges)
|
||||
kernel = kernel_detection(blurred, mask, edge_threshold=edge_threshold, profile_length=profile_length)
|
||||
|
||||
test_blurred = cv2.imread(image_file, cv2.IMREAD_GRAYSCALE).astype(np.float32) / 255.0
|
||||
|
||||
deconvolved = richardson_lucy(test_blurred, kernel, num_iter=30)
|
||||
|
||||
# Display results
|
||||
plt.figure(figsize=(12, 4))
|
||||
plt.subplot(1, 3, 1)
|
||||
plt.title("Blurred Image")
|
||||
plt.imshow(test_blurred, cmap='gray')
|
||||
plt.axis('off')
|
||||
|
||||
plt.subplot(1, 3, 2)
|
||||
plt.title("Estimated Kernel")
|
||||
plt.imshow(kernel, cmap='hot')
|
||||
plt.axis('off')
|
||||
|
||||
plt.subplot(1, 3, 3)
|
||||
plt.title("Deconvolved Image")
|
||||
plt.imshow(deconvolved, cmap='gray')
|
||||
plt.axis('off')
|
||||
|
||||
plt.tight_layout()
|
||||
plt.show()
|
||||
|
||||
|
||||
|
||||
|
||||
@ -179,4 +253,4 @@ if __name__ == "__main__":
|
||||
img_file = "assets/real_test.jpg"
|
||||
|
||||
#demo("assets/omas.png")
|
||||
deconvolution(img_file)
|
||||
deconvolution(img_file, edge_threshold=10)
|
||||
|
Loading…
x
Reference in New Issue
Block a user