generated from Hazel/python-project
wip
This commit is contained in:
parent
061cc20046
commit
94b641cbd6
@ -13,7 +13,7 @@ I first realized that a normal mosaic algorithm isn't safe AT ALL seeing this pr
|
||||
```bash
|
||||
# Step 1: Create and activate virtual environment
|
||||
python3 -m venv .venv
|
||||
source venv/bin/activate
|
||||
source .venv/bin/activate
|
||||
|
||||
# Step 2: Install the local Python program add the -e flag for development
|
||||
pip install .
|
||||
@ -36,7 +36,6 @@ rm big-lama.zip
|
||||
# get the code to run the models
|
||||
cd big-lama
|
||||
git clone https://github.com/advimman/lama.git
|
||||
pip install torch==2.2.0 torchvision==0.17.0
|
||||
cd lama
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
@ -5,6 +5,6 @@ from .pixelation_process import pixelate
|
||||
def cli():
|
||||
print(f"Running secure_pixelation")
|
||||
|
||||
pixelate("assets/human_detection/test.png", generative_impaint=False)
|
||||
pixelate("assets/human_detection/humans.png", generative_impaint=False)
|
||||
pixelate("assets/human_detection/rev1.png", generative_impaint=False)
|
||||
pixelate("assets/human_detection/test.png", generative_impaint=True)
|
||||
# pixelate("assets/human_detection/humans.png", generative_impaint=False)
|
||||
# pixelate("assets/human_detection/rev1.png", generative_impaint=False)
|
||||
|
@ -4,6 +4,7 @@ from typing import Optional
|
||||
from pathlib import Path
|
||||
import subprocess
|
||||
import sys
|
||||
import os
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
@ -28,7 +29,7 @@ def get_mask(raw_image: RawImage) -> np.ndarray:
|
||||
return mask
|
||||
|
||||
|
||||
def impaint(raw_image: RawImage, image: Optional[np.ndarray] = None) -> np.ndarray:
|
||||
def quick_impaint(raw_image: RawImage, image: Optional[np.ndarray] = None) -> np.ndarray:
|
||||
image = image if image is not None else raw_image.get_image()
|
||||
|
||||
mask = get_mask(raw_image)
|
||||
@ -52,28 +53,25 @@ def do_generative_impaint(raw_image: RawImage, image: Optional[np.ndarray] = Non
|
||||
|
||||
# Run LaMa inference (adjust path if needed)
|
||||
try:
|
||||
pwd = os.getcwd()
|
||||
subprocess.run([
|
||||
sys.executable, "big-lama/lama/bin/predict.py",
|
||||
"model.path=big-lama/big-lama",
|
||||
f"indir={str(lama_dict_in)}",
|
||||
f"outdir={str(lama_dict_out)}"
|
||||
sys.executable, "lama/bin/predict.py",
|
||||
f"model.path={pwd}/lama/models/big-lama",
|
||||
f"indir={pwd}/{str(lama_dict_in)}",
|
||||
f"outdir={pwd}/{str(lama_dict_out)}"
|
||||
], check=True)
|
||||
except subprocess.CalledProcessError as e:
|
||||
print(f"Error running LaMa: {e}")
|
||||
return image # fallback to original if it fails
|
||||
print("falling back to non generative inpaint")
|
||||
return quick_impaint(raw_image=raw_image, image=image)
|
||||
|
||||
# Load inpainted result
|
||||
result_path = os.path.join(output_dir, "image.png")
|
||||
if os.path.exists(result_path):
|
||||
inpainted_image = cv2.imread(result_path)
|
||||
result_path = lama_dict_out / "image.png"
|
||||
if result_path.exists():
|
||||
return cv2.imread(str(result_path))
|
||||
else:
|
||||
print("Inpainted result not found, returning original.")
|
||||
inpainted_image = image
|
||||
|
||||
# Cleanup
|
||||
shutil.rmtree(base_dir)
|
||||
|
||||
return inpainted_image
|
||||
print("Inpainted result not found, falling back to non generative inpaint")
|
||||
return quick_impaint(raw_image=raw_image, image=image)
|
||||
|
||||
|
||||
|
||||
@ -115,7 +113,7 @@ def pixelate(to_detect: str, generative_impaint: bool = True, debug_drawings: bo
|
||||
if generative_impaint:
|
||||
step_2 = do_generative_impaint(raw_image, image=step_1)
|
||||
else:
|
||||
step_2 = impaint(raw_image, image=step_1)
|
||||
step_2 = quick_impaint(raw_image, image=step_1)
|
||||
write_image(step_2, "step_2")
|
||||
|
||||
step_3 = pixelate_regions(raw_image, image=step_2)
|
||||
|
Loading…
x
Reference in New Issue
Block a user