generated from Hazel/python-project
Compare commits
2 Commits
ed650dcc5d
...
6101a8d5e4
Author | SHA1 | Date | |
---|---|---|---|
|
6101a8d5e4 | ||
|
b4c7512a73 |
@ -2,9 +2,17 @@ import numpy as np
|
|||||||
from scipy.signal import convolve2d
|
from scipy.signal import convolve2d
|
||||||
from scipy.sparse import lil_matrix
|
from scipy.sparse import lil_matrix
|
||||||
from scipy.sparse.linalg import spsolve
|
from scipy.sparse.linalg import spsolve
|
||||||
|
from scipy.optimize import curve_fit
|
||||||
import cv2
|
import cv2
|
||||||
|
import matplotlib
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
from scipy.ndimage import correlate
|
||||||
|
from skimage.restoration import richardson_lucy
|
||||||
|
import os
|
||||||
|
|
||||||
|
|
||||||
|
matplotlib.use('qtagg')
|
||||||
|
|
||||||
"""
|
"""
|
||||||
https://setosa.io/ev/image-kernels/
|
https://setosa.io/ev/image-kernels/
|
||||||
@ -130,70 +138,119 @@ def get_mask(image_file):
|
|||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def color_edge_detection(image, threshold=30):
|
||||||
|
img_lab = cv2.cvtColor(image, cv2.COLOR_BGR2Lab)
|
||||||
|
L, A, B = cv2.split(img_lab)
|
||||||
|
|
||||||
def deconvolution(image_file):
|
def gradient_magnitude(channel):
|
||||||
|
gx = cv2.Sobel(channel, cv2.CV_64F, 1, 0, ksize=3)
|
||||||
image = cv2.imread(image_file, 0)
|
gy = cv2.Sobel(channel, cv2.CV_64F, 0, 1, ksize=3)
|
||||||
# image = cv2.resize(image, (200, 200), interpolation= cv2.INTER_LINEAR)
|
return gx, gy
|
||||||
mask = get_mask(image_file)
|
|
||||||
|
gxL, gyL = gradient_magnitude(L)
|
||||||
|
gxA, gyA = gradient_magnitude(A)
|
||||||
|
gxB, gyB = gradient_magnitude(B)
|
||||||
|
|
||||||
|
gx_total = gxL**2 + gxA**2 + gxB**2
|
||||||
|
gy_total = gyL**2 + gyA**2 + gyB**2
|
||||||
|
magnitude = np.sqrt(gx_total + gy_total)
|
||||||
|
|
||||||
|
magnitude = cv2.normalize(magnitude, None, 0, 255, cv2.NORM_MINMAX)
|
||||||
|
edges = (magnitude > threshold).astype(np.uint8) * 255
|
||||||
|
return edges, magnitude
|
||||||
|
|
||||||
|
|
||||||
# Define 2D image and kernel
|
# === Step 2: Extract Vertical Profile ===
|
||||||
|
def extract_vertical_profile(image, center_x, center_y, length=21):
|
||||||
|
half_len = length // 2
|
||||||
|
y_range = np.clip(np.arange(center_y - half_len, center_y + half_len + 1), 0, image.shape[0] - 1)
|
||||||
|
profile = image[y_range, center_x].astype(np.float64)
|
||||||
|
profile -= profile.min()
|
||||||
|
if profile.max() > 0:
|
||||||
|
profile /= profile.max()
|
||||||
|
return profile, y_range - center_y # profile, x-axis
|
||||||
|
|
||||||
|
# === Step 3: Fit Gaussian ===
|
||||||
|
def gaussian(x, amp, mu, sigma):
|
||||||
|
return amp * np.exp(-(x - mu)**2 / (2 * sigma**2))
|
||||||
|
|
||||||
|
def fit_gaussian(profile, x_vals):
|
||||||
|
p0 = [1.0, 0.0, 2.0] # initial guess: amp, mu, sigma
|
||||||
|
popt, _ = curve_fit(gaussian, x_vals, profile, p0=p0)
|
||||||
|
return popt # amp, mu, sigma
|
||||||
|
|
||||||
|
# === Step 4: Create Gaussian Kernel ===
|
||||||
|
def create_gaussian_kernel(sigma):
|
||||||
|
ksize = int(sigma * 6) | 1 # ensure odd size
|
||||||
|
kernel_1d = cv2.getGaussianKernel(ksize, sigma)
|
||||||
|
kernel_2d = kernel_1d @ kernel_1d.T
|
||||||
|
return kernel_2d
|
||||||
|
|
||||||
|
|
||||||
kernel = np.array([
|
def kernel_detection(blurred, mask, edge_threshold=30, profile_length=21):
|
||||||
[1, 1, 1],
|
edges, gradient_mag = color_edge_detection(blurred, threshold=edge_threshold)
|
||||||
[1, 1, 1],
|
edges = cv2.bitwise_and(edges, edges, mask=mask)
|
||||||
[1, 1, 1]
|
# show(edges)
|
||||||
], dtype=np.float32)
|
|
||||||
kernel /= kernel.sum() # Normalize
|
|
||||||
|
# Find central edge pixel
|
||||||
|
y_idxs, x_idxs = np.where(edges > 0)
|
||||||
|
if len(x_idxs) == 0:
|
||||||
|
raise RuntimeError("No edges found.")
|
||||||
|
idx = len(x_idxs) // 2
|
||||||
|
cx, cy = x_idxs[idx], y_idxs[idx]
|
||||||
|
|
||||||
|
gray = cv2.cvtColor(blurred, cv2.COLOR_BGR2GRAY)
|
||||||
|
profile, x_vals = extract_vertical_profile(gray, cx, cy, length=profile_length)
|
||||||
|
popt = fit_gaussian(profile, x_vals)
|
||||||
|
amp, mu, sigma = popt
|
||||||
|
|
||||||
|
print(f"Estimated Gaussian sigma: {sigma:.2f}")
|
||||||
|
|
||||||
|
kernel = create_gaussian_kernel(sigma)
|
||||||
|
|
||||||
print(kernel)
|
print(kernel)
|
||||||
return
|
|
||||||
|
|
||||||
# Perform 2D convolution (blurring)
|
return kernel / kernel.sum()
|
||||||
|
|
||||||
h, w = image.shape
|
|
||||||
kh, kw = kernel.shape
|
|
||||||
pad_h, pad_w = kh // 2, kw // 2
|
|
||||||
|
|
||||||
|
|
||||||
show(image)
|
|
||||||
|
|
||||||
print("Original image:\n", image)
|
def deconvolution(image_file, edge_threshold=30, profile_length=21):
|
||||||
print("\nBlurred image:\n", image)
|
blurred = cv2.imread(image_file)
|
||||||
|
mask = get_mask(image_file)
|
||||||
|
|
||||||
print("\nBuilding linear system for deconvolution...")
|
kernel = kernel_detection(blurred, mask, edge_threshold=edge_threshold, profile_length=profile_length)
|
||||||
|
|
||||||
|
test_blurred = cv2.imread(image_file, cv2.IMREAD_GRAYSCALE).astype(np.float32) / 255.0
|
||||||
|
|
||||||
# Step 2: Build sparse matrix A
|
deconvolved = richardson_lucy(test_blurred, kernel, num_iter=30)
|
||||||
N = h * w
|
|
||||||
A = lil_matrix((N, N), dtype=np.float32)
|
# Display results
|
||||||
b = image.flatten()
|
plt.figure(figsize=(12, 4))
|
||||||
|
plt.subplot(1, 3, 1)
|
||||||
|
plt.title("Blurred Image")
|
||||||
|
plt.imshow(test_blurred, cmap='gray')
|
||||||
|
plt.axis('off')
|
||||||
|
|
||||||
def index(y, x):
|
plt.subplot(1, 3, 2)
|
||||||
return y * w + x
|
plt.title("Estimated Kernel")
|
||||||
|
plt.imshow(kernel, cmap='hot')
|
||||||
|
plt.axis('off')
|
||||||
|
|
||||||
|
plt.subplot(1, 3, 3)
|
||||||
|
plt.title("Deconvolved Image")
|
||||||
|
plt.imshow(deconvolved, cmap='gray')
|
||||||
|
plt.axis('off')
|
||||||
|
|
||||||
|
plt.tight_layout()
|
||||||
|
plt.show()
|
||||||
|
|
||||||
for y in range(h):
|
|
||||||
for x in range(w):
|
|
||||||
row_idx = index(y, x)
|
|
||||||
for ky in range(kh):
|
|
||||||
for kx in range(kw):
|
|
||||||
iy = y + ky - pad_h
|
|
||||||
ix = x + kx - pad_w
|
|
||||||
if 0 <= iy < h and 0 <= ix < w:
|
|
||||||
col_idx = index(iy, ix)
|
|
||||||
A[row_idx, col_idx] += kernel[ky, kx]
|
|
||||||
|
|
||||||
# Step 3: Solve the sparse system A * x = b
|
|
||||||
x = spsolve(A.tocsr(), b)
|
|
||||||
deblurred = x.reshape((h, w))
|
|
||||||
|
|
||||||
print("\nDeblurred image:\n", np.round(deblurred, 2))
|
|
||||||
|
|
||||||
show(deblurred)
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
img_file = "assets/real_test.jpg"
|
img_file = "assets/real_test.jpg"
|
||||||
|
|
||||||
#demo("assets/omas.png")
|
#demo("assets/omas.png")
|
||||||
deconvolution(img_file)
|
deconvolution(img_file, edge_threshold=10)
|
||||||
|
Loading…
x
Reference in New Issue
Block a user