generated from Hazel/python-project
Compare commits
3 Commits
529e1af517
...
94b641cbd6
Author | SHA1 | Date | |
---|---|---|---|
94b641cbd6 | |||
061cc20046 | |||
8753e1e05f |
2
.gitignore
vendored
2
.gitignore
vendored
@ -162,3 +162,5 @@ cython_debug/
|
||||
.venv
|
||||
assets/*
|
||||
*.pt
|
||||
|
||||
big-lama
|
20
README.md
20
README.md
@ -13,7 +13,7 @@ I first realized that a normal mosaic algorithm isn't safe AT ALL seeing this pr
|
||||
```bash
|
||||
# Step 1: Create and activate virtual environment
|
||||
python3 -m venv .venv
|
||||
source venv/bin/activate
|
||||
source .venv/bin/activate
|
||||
|
||||
# Step 2: Install the local Python program add the -e flag for development
|
||||
pip install .
|
||||
@ -21,3 +21,21 @@ pip install .
|
||||
# Step 3: Run the secure-pixelation command
|
||||
secure-pixelation
|
||||
```
|
||||
|
||||
## Setup LaMa
|
||||
|
||||
This is the generative ai model to impaint the blacked out areas.
|
||||
|
||||
```
|
||||
# get the pretrained models
|
||||
mkdir -p ./big-lama
|
||||
wget https://huggingface.co/smartywu/big-lama/resolve/main/big-lama.zip
|
||||
unzip big-lama.zip -d ./big-lama
|
||||
rm big-lama.zip
|
||||
|
||||
# get the code to run the models
|
||||
cd big-lama
|
||||
git clone https://github.com/advimman/lama.git
|
||||
cd lama
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
@ -5,4 +5,6 @@ from .pixelation_process import pixelate
|
||||
def cli():
|
||||
print(f"Running secure_pixelation")
|
||||
|
||||
pixelate("assets/human_detection/test.png")
|
||||
pixelate("assets/human_detection/test.png", generative_impaint=True)
|
||||
# pixelate("assets/human_detection/humans.png", generative_impaint=False)
|
||||
# pixelate("assets/human_detection/rev1.png", generative_impaint=False)
|
||||
|
@ -2,6 +2,9 @@ from __future__ import annotations
|
||||
|
||||
from typing import Optional
|
||||
from pathlib import Path
|
||||
import subprocess
|
||||
import sys
|
||||
import os
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
@ -18,30 +21,57 @@ def blackout(raw_image: RawImage) -> np.ndarray:
|
||||
return image
|
||||
|
||||
|
||||
def impaint(raw_image: RawImage, image: Optional[np.ndarray] = None) -> np.ndarray:
|
||||
image = image if image is not None else raw_image.get_image()
|
||||
|
||||
# Create a mask where blacked-out areas are marked as 255 (white)
|
||||
mask = np.zeros(image.shape[:2], dtype=np.uint8)
|
||||
|
||||
def get_mask(raw_image: RawImage) -> np.ndarray:
|
||||
mask = np.zeros(raw_image.image.shape[:2], dtype=np.uint8)
|
||||
for (x, y, w, h) in raw_image.bounding_boxes:
|
||||
mask[y:y+h, x:x+w] = 255
|
||||
|
||||
return mask
|
||||
|
||||
|
||||
def quick_impaint(raw_image: RawImage, image: Optional[np.ndarray] = None) -> np.ndarray:
|
||||
image = image if image is not None else raw_image.get_image()
|
||||
|
||||
mask = get_mask(raw_image)
|
||||
|
||||
# Apply inpainting using the Telea method
|
||||
return cv2.inpaint(image, mask, inpaintRadius=3, flags=cv2.INPAINT_TELEA)
|
||||
|
||||
|
||||
def do_generative_impaint(raw_image: RawImage, image: Optional[np.ndarray] = None) -> np.ndarray:
|
||||
image = image if image is not None else raw_image.get_image()
|
||||
lama_dict = raw_image.get_dir("steps") / "lama"
|
||||
lama_dict.mkdir(exist_ok=True)
|
||||
lama_dict_in = lama_dict / "in"
|
||||
lama_dict_in.mkdir(exist_ok=True)
|
||||
lama_dict_out = lama_dict / "out"
|
||||
lama_dict_out.mkdir(exist_ok=True)
|
||||
|
||||
# Create a mask where blacked-out areas are marked as 255 (white)
|
||||
mask = np.zeros(image.shape[:2], dtype=np.uint8)
|
||||
cv2.imwrite(str(lama_dict_in / "image.png"), raw_image.image)
|
||||
mask = get_mask(raw_image)
|
||||
cv2.imwrite(str(lama_dict_in / "mask.png"), mask)
|
||||
|
||||
for (x, y, w, h) in raw_image.bounding_boxes:
|
||||
mask[y:y+h, x:x+w] = 255
|
||||
# Run LaMa inference (adjust path if needed)
|
||||
try:
|
||||
pwd = os.getcwd()
|
||||
subprocess.run([
|
||||
sys.executable, "lama/bin/predict.py",
|
||||
f"model.path={pwd}/lama/models/big-lama",
|
||||
f"indir={pwd}/{str(lama_dict_in)}",
|
||||
f"outdir={pwd}/{str(lama_dict_out)}"
|
||||
], check=True)
|
||||
except subprocess.CalledProcessError as e:
|
||||
print(f"Error running LaMa: {e}")
|
||||
print("falling back to non generative inpaint")
|
||||
return quick_impaint(raw_image=raw_image, image=image)
|
||||
|
||||
# Apply inpainting using the Telea method
|
||||
return cv2.inpaint(image, mask, inpaintRadius=3, flags=cv2.INPAINT_TELEA)
|
||||
# Load inpainted result
|
||||
result_path = lama_dict_out / "image.png"
|
||||
if result_path.exists():
|
||||
return cv2.imread(str(result_path))
|
||||
else:
|
||||
print("Inpainted result not found, falling back to non generative inpaint")
|
||||
return quick_impaint(raw_image=raw_image, image=image)
|
||||
|
||||
|
||||
|
||||
@ -83,7 +113,7 @@ def pixelate(to_detect: str, generative_impaint: bool = True, debug_drawings: bo
|
||||
if generative_impaint:
|
||||
step_2 = do_generative_impaint(raw_image, image=step_1)
|
||||
else:
|
||||
step_2 = impaint(raw_image, image=step_1)
|
||||
step_2 = quick_impaint(raw_image, image=step_1)
|
||||
write_image(step_2, "step_2")
|
||||
|
||||
step_3 = pixelate_regions(raw_image, image=step_2)
|
||||
|
Loading…
x
Reference in New Issue
Block a user