generated from Hazel/python-project
200 lines
5.1 KiB
Python
200 lines
5.1 KiB
Python
import numpy as np
|
|
from scipy.signal import convolve2d
|
|
from scipy.sparse import lil_matrix
|
|
from scipy.sparse.linalg import spsolve
|
|
import cv2
|
|
import matplotlib.pyplot as plt
|
|
from pathlib import Path
|
|
|
|
"""
|
|
https://setosa.io/ev/image-kernels/
|
|
https://openaccess.thecvf.com/content/CVPR2021/papers/Tran_Explore_Image_Deblurring_via_Encoded_Blur_Kernel_Space_CVPR_2021_paper.pdf
|
|
"""
|
|
|
|
def show(img):
|
|
cv2.imshow('image',img.astype(np.uint8))
|
|
cv2.waitKey(0)
|
|
cv2.destroyAllWindows()
|
|
|
|
|
|
def demo(image_file):
|
|
# Define 2D image and kernel
|
|
image = cv2.imread(image_file, 0)
|
|
image = cv2.resize(image, (200, 200), interpolation= cv2.INTER_LINEAR)
|
|
|
|
kernel = np.array([
|
|
[1, 2, 1],
|
|
[2, 4, 2],
|
|
[1, 2, 1]
|
|
], dtype=np.float32)
|
|
kernel /= kernel.sum() # Normalize
|
|
|
|
print(kernel)
|
|
|
|
# Perform 2D convolution (blurring)
|
|
blurred = convolve2d(image, kernel, mode="same", boundary="fill", fillvalue=0)
|
|
|
|
h, w = image.shape
|
|
kh, kw = kernel.shape
|
|
pad_h, pad_w = kh // 2, kw // 2
|
|
|
|
|
|
show(image)
|
|
show(blurred)
|
|
|
|
print("Original image:\n", image)
|
|
print("\nBlurred image:\n", blurred)
|
|
|
|
print("\nBuilding linear system for deconvolution...")
|
|
|
|
# Step 2: Build sparse matrix A
|
|
N = h * w
|
|
A = lil_matrix((N, N), dtype=np.float32)
|
|
b = blurred.flatten()
|
|
|
|
def index(y, x):
|
|
return y * w + x
|
|
|
|
for y in range(h):
|
|
for x in range(w):
|
|
row_idx = index(y, x)
|
|
for ky in range(kh):
|
|
for kx in range(kw):
|
|
iy = y + ky - pad_h
|
|
ix = x + kx - pad_w
|
|
if 0 <= iy < h and 0 <= ix < w:
|
|
col_idx = index(iy, ix)
|
|
A[row_idx, col_idx] += kernel[ky, kx]
|
|
|
|
# Step 3: Solve the sparse system A * x = b
|
|
x = spsolve(A.tocsr(), b)
|
|
deblurred = x.reshape((h, w))
|
|
|
|
print("\nDeblurred image:\n", np.round(deblurred, 2))
|
|
|
|
show(deblurred)
|
|
|
|
|
|
def get_mask(image_file):
|
|
mask_file = Path(image_file)
|
|
mask_file = mask_file.with_name("mask_" + mask_file.name)
|
|
|
|
if mask_file.exists():
|
|
return cv2.imread(str(mask_file), 0)
|
|
|
|
drawing = False # True when mouse is pressed
|
|
brush_size = 5
|
|
image = cv2.imread(image_file)
|
|
mask = np.zeros(image.shape[:2], dtype=np.uint8)
|
|
clone = image.copy()
|
|
|
|
def draw_mask(event, x, y, flags, param):
|
|
nonlocal drawing, mask, brush_size
|
|
|
|
if event == cv2.EVENT_LBUTTONDOWN:
|
|
drawing = True
|
|
elif event == cv2.EVENT_MOUSEMOVE:
|
|
if drawing:
|
|
cv2.circle(mask, (x, y), brush_size, 255, -1)
|
|
cv2.circle(image, (x, y), brush_size, (0, 0, 255), -1)
|
|
elif event == cv2.EVENT_LBUTTONUP:
|
|
drawing = False
|
|
|
|
|
|
cv2.namedWindow("Draw Mask")
|
|
cv2.setMouseCallback("Draw Mask", draw_mask)
|
|
|
|
while True:
|
|
display = image.copy()
|
|
cv2.putText(display, f'Brush size: {brush_size}', (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0,255,0), 2)
|
|
cv2.imshow("Draw Mask", display)
|
|
key = cv2.waitKey(1) & 0xFF
|
|
if key == 13: # Enter to finish
|
|
break
|
|
elif key == ord('+') or key == ord('='): # `=` for some keyboard layouts
|
|
brush_size = min(100, brush_size + 1)
|
|
elif key == ord('-') or key == ord('_'):
|
|
brush_size = max(1, brush_size - 1)
|
|
|
|
|
|
cv2.destroyAllWindows()
|
|
|
|
cv2.imwrite(str(mask_file), mask)
|
|
|
|
# Apply mask
|
|
masked_image = cv2.bitwise_and(clone, clone, mask=mask)
|
|
|
|
cv2.imshow("Masked Image", masked_image)
|
|
cv2.waitKey(0)
|
|
cv2.destroyAllWindows()
|
|
|
|
|
|
|
|
|
|
def deconvolution(image_file):
|
|
|
|
image = cv2.imread(image_file, 0)
|
|
# image = cv2.resize(image, (200, 200), interpolation= cv2.INTER_LINEAR)
|
|
mask = get_mask(image_file)
|
|
|
|
|
|
# Define 2D image and kernel
|
|
|
|
|
|
kernel = np.array([
|
|
[1, 1, 1],
|
|
[1, 1, 1],
|
|
[1, 1, 1]
|
|
], dtype=np.float32)
|
|
kernel /= kernel.sum() # Normalize
|
|
|
|
print(kernel)
|
|
return
|
|
|
|
# Perform 2D convolution (blurring)
|
|
|
|
h, w = image.shape
|
|
kh, kw = kernel.shape
|
|
pad_h, pad_w = kh // 2, kw // 2
|
|
|
|
|
|
show(image)
|
|
|
|
print("Original image:\n", image)
|
|
print("\nBlurred image:\n", image)
|
|
|
|
print("\nBuilding linear system for deconvolution...")
|
|
|
|
# Step 2: Build sparse matrix A
|
|
N = h * w
|
|
A = lil_matrix((N, N), dtype=np.float32)
|
|
b = image.flatten()
|
|
|
|
def index(y, x):
|
|
return y * w + x
|
|
|
|
for y in range(h):
|
|
for x in range(w):
|
|
row_idx = index(y, x)
|
|
for ky in range(kh):
|
|
for kx in range(kw):
|
|
iy = y + ky - pad_h
|
|
ix = x + kx - pad_w
|
|
if 0 <= iy < h and 0 <= ix < w:
|
|
col_idx = index(iy, ix)
|
|
A[row_idx, col_idx] += kernel[ky, kx]
|
|
|
|
# Step 3: Solve the sparse system A * x = b
|
|
x = spsolve(A.tocsr(), b)
|
|
deblurred = x.reshape((h, w))
|
|
|
|
print("\nDeblurred image:\n", np.round(deblurred, 2))
|
|
|
|
show(deblurred)
|
|
|
|
if __name__ == "__main__":
|
|
img_file = "assets/real_test.jpg"
|
|
|
|
#demo("assets/omas.png")
|
|
deconvolution(img_file)
|