2025-05-07 13:46:27 +02:00

420 lines
13 KiB
Python

import numpy as np
from scipy.signal import convolve2d
from scipy.sparse import lil_matrix
from scipy.sparse.linalg import spsolve
from scipy.optimize import curve_fit
import cv2
import matplotlib
import matplotlib.pyplot as plt
from pathlib import Path
from scipy.ndimage import correlate
from skimage.restoration import richardson_lucy
import os
matplotlib.use('qtagg')
"""
https://setosa.io/ev/image-kernels/
https://openaccess.thecvf.com/content/CVPR2021/papers/Tran_Explore_Image_Deblurring_via_Encoded_Blur_Kernel_Space_CVPR_2021_paper.pdf
"""
def show(img):
cv2.imshow('image',img.astype(np.uint8))
cv2.waitKey(0)
cv2.destroyAllWindows()
def demo(image_file):
# Define 2D image and kernel
image = cv2.imread(image_file, 0)
image = cv2.resize(image, (200, 200), interpolation= cv2.INTER_LINEAR)
kernel = np.array([
[1, 2, 1],
[2, 4, 2],
[1, 2, 1]
], dtype=np.float32)
kernel /= kernel.sum() # Normalize
print(kernel)
# Perform 2D convolution (blurring)
blurred = convolve2d(image, kernel, mode="same", boundary="fill", fillvalue=0)
h, w = image.shape
kh, kw = kernel.shape
pad_h, pad_w = kh // 2, kw // 2
show(image)
show(blurred)
print("Original image:\n", image)
print("\nBlurred image:\n", blurred)
print("\nBuilding linear system for deconvolution...")
# Step 2: Build sparse matrix A
N = h * w
A = lil_matrix((N, N), dtype=np.float32)
b = blurred.flatten()
def index(y, x):
return y * w + x
for y in range(h):
for x in range(w):
row_idx = index(y, x)
for ky in range(kh):
for kx in range(kw):
iy = y + ky - pad_h
ix = x + kx - pad_w
if 0 <= iy < h and 0 <= ix < w:
col_idx = index(iy, ix)
A[row_idx, col_idx] += kernel[ky, kx]
# Step 3: Solve the sparse system A * x = b
x = spsolve(A.tocsr(), b)
deblurred = x.reshape((h, w))
print("\nDeblurred image:\n", np.round(deblurred, 2))
show(deblurred)
def get_mask(image_file):
mask_file = Path(image_file)
mask_file = mask_file.with_name("mask_" + mask_file.name)
if mask_file.exists():
return cv2.imread(str(mask_file), 0)
drawing = False # True when mouse is pressed
brush_size = 5
image = cv2.imread(image_file)
mask = np.zeros(image.shape[:2], dtype=np.uint8)
clone = image.copy()
def draw_mask(event, x, y, flags, param):
nonlocal drawing, mask, brush_size
if event == cv2.EVENT_LBUTTONDOWN:
drawing = True
elif event == cv2.EVENT_MOUSEMOVE:
if drawing:
cv2.circle(mask, (x, y), brush_size, 255, -1)
cv2.circle(image, (x, y), brush_size, (0, 0, 255), -1)
elif event == cv2.EVENT_LBUTTONUP:
drawing = False
cv2.namedWindow("Draw Mask")
cv2.setMouseCallback("Draw Mask", draw_mask)
while True:
display = image.copy()
cv2.putText(display, f'Brush size: {brush_size}', (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0,255,0), 2)
cv2.imshow("Draw Mask", display)
key = cv2.waitKey(1) & 0xFF
if key == 13: # Enter to finish
break
elif key == ord('+') or key == ord('='): # `=` for some keyboard layouts
brush_size = min(100, brush_size + 1)
elif key == ord('-') or key == ord('_'):
brush_size = max(1, brush_size - 1)
cv2.destroyAllWindows()
cv2.imwrite(str(mask_file), mask)
# Apply mask
masked_image = cv2.bitwise_and(clone, clone, mask=mask)
cv2.imshow("Masked Image", masked_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
def color_edge_detection(image, threshold=30):
img_lab = cv2.cvtColor(image, cv2.COLOR_BGR2Lab)
L, A, B = cv2.split(img_lab)
def gradient_magnitude(channel):
gx = cv2.Sobel(channel, cv2.CV_64F, 1, 0, ksize=3)
gy = cv2.Sobel(channel, cv2.CV_64F, 0, 1, ksize=3)
return gx, gy
gxL, gyL = gradient_magnitude(L)
gxA, gyA = gradient_magnitude(A)
gxB, gyB = gradient_magnitude(B)
gx_total = gxL**2 + gxA**2 + gxB**2
gy_total = gyL**2 + gyA**2 + gyB**2
magnitude = np.sqrt(gx_total + gy_total)
magnitude = cv2.normalize(magnitude, None, 0, 255, cv2.NORM_MINMAX)
edges = (magnitude > threshold).astype(np.uint8) * 255
return edges, magnitude
# === Step 2: Extract Vertical Profile ===
def extract_vertical_profile(image, center_x, center_y, length=21):
half_len = length // 2
y_range = np.clip(np.arange(center_y - half_len, center_y + half_len + 1), 0, image.shape[0] - 1)
profile = image[y_range, center_x].astype(np.float64)
profile -= profile.min()
if profile.max() > 0:
profile /= profile.max()
return profile, y_range - center_y # profile, x-axis
# === Step 3: Fit Gaussian ===
def gaussian(x, amp, mu, sigma):
return amp * np.exp(-(x - mu)**2 / (2 * sigma**2))
def fit_gaussian(profile, x_vals):
p0 = [1.0, 0.0, 2.0] # initial guess: amp, mu, sigma
popt, _ = curve_fit(gaussian, x_vals, profile, p0=p0)
return popt # amp, mu, sigma
# === Step 4: Create Gaussian Kernel ===
def create_gaussian_kernel(sigma):
ksize = int(sigma * 6) | 1 # ensure odd size
kernel_1d = cv2.getGaussianKernel(ksize, sigma)
kernel_2d = kernel_1d @ kernel_1d.T
return kernel_2d
def kernel_detection(blurred, mask, edge_threshold=30, profile_length=21):
edges, gradient_mag = color_edge_detection(blurred, threshold=edge_threshold)
edges = cv2.bitwise_and(edges, edges, mask=mask)
# show(edges)
# Find central edge pixel
y_idxs, x_idxs = np.where(edges > 0)
if len(x_idxs) == 0:
raise RuntimeError("No edges found.")
idx = len(x_idxs) // 2
cx, cy = x_idxs[idx], y_idxs[idx]
gray = cv2.cvtColor(blurred, cv2.COLOR_BGR2GRAY)
profile, x_vals = extract_vertical_profile(gray, cx, cy, length=profile_length)
popt = fit_gaussian(profile, x_vals)
amp, mu, sigma = popt
print(f"Estimated Gaussian sigma: {sigma:.2f}")
kernel = create_gaussian_kernel(sigma)
# print(kernel)
return kernel / kernel.sum()
def kernel_detection_box(blurred, mask, edge_threshold=30, profile_length=21):
def box_function(x, amp, center, width):
"""Simple box profile: flat region with sharp transitions."""
return amp * ((x >= (center - width / 2)) & (x <= (center + width / 2))).astype(float)
def fit_box(profile, x_vals):
# Initial guess: full amplitude, centered at 0, small width
p0 = [1.0, 0.0, 5.0]
bounds = ([0, -10, 1], [1.5, 10, len(x_vals)]) # reasonable bounds
popt, _ = curve_fit(box_function, x_vals, profile, p0=p0, bounds=bounds)
return popt # amp, center, width
def create_box_kernel(width):
"""Generate a normalized 2D box kernel."""
ksize = int(round(width))
if ksize < 1:
ksize = 1
if ksize % 2 == 0:
ksize += 1 # ensure odd size
kernel = np.ones((ksize, ksize), dtype=np.float32)
return kernel / kernel.sum()
edges, gradient_mag = color_edge_detection(blurred, threshold=edge_threshold)
edges = cv2.bitwise_and(edges, edges, mask=mask)
y_idxs, x_idxs = np.where(edges > 0)
if len(x_idxs) == 0:
raise RuntimeError("No edges found.")
idx = len(x_idxs) // 2
cx, cy = x_idxs[idx], y_idxs[idx]
gray = cv2.cvtColor(blurred, cv2.COLOR_BGR2GRAY)
profile, x_vals = extract_vertical_profile(gray, cx, cy, length=profile_length)
popt = fit_box(profile, x_vals)
amp, mu, width = popt
print(f"Estimated box width: {width:.2f} pixels")
kernel = create_box_kernel(width)
return kernel
def deconvolution(image_file, edge_threshold=30, profile_length=21):
image = cv2.imread(image_file)
mask = get_mask(image_file)
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB).astype(np.float32) / 255.0
kernel = kernel_detection_box(image, mask, edge_threshold=edge_threshold, profile_length=profile_length)
# Apply Richardson-Lucy to each channel
num_iter = 30
deblurred_channels = []
for i in range(3): # R, G, B
channel = image_rgb[..., i]
deconv = richardson_lucy(channel, kernel, num_iter=num_iter)
deblurred_channels.append(deconv)
# Stack back into an RGB image
deblurred_rgb = np.stack(deblurred_channels, axis=2)
deblurred_rgb = np.clip(deblurred_rgb, 0, 1)
# Show result
plt.figure(figsize=(10, 5))
plt.subplot(1, 2, 1)
plt.imshow(image_rgb)
plt.title("Blurred Image")
plt.axis('off')
plt.subplot(1, 2, 2)
plt.imshow(deblurred_rgb)
plt.title("Deconvolved Image")
plt.axis('off')
plt.show()
def sharpness_heatmap(image, block_size=32, threshold=30):
"""
Compute a sharpness heatmap using color-aware Laplacian variance over blocks,
generate a binary mask highlighting blurred areas, and smooth the edges of the mask.
Args:
image: BGR or RGB image (NumPy array).
block_size: Size of the square block to compute sharpness.
sigma: Standard deviation for Gaussian smoothing of the heatmap.
threshold: Sharpness threshold to define blurred regions (between 0 and 1).
smoothing_sigma: Standard deviation for Gaussian smoothing of the binary mask edges.
Returns:
blurred_mask: Binary mask highlighting blurred areas (0 = sharp, 255 = blurred).
"""
if image.ndim != 3 or image.shape[2] != 3:
raise ValueError("Input must be a color image (3 channels)")
h, w, _ = image.shape
heatmap = np.zeros((h // block_size, w // block_size))
# Calculate sharpness for each block
for y in range(0, h - block_size + 1, block_size):
for x in range(0, w - block_size + 1, block_size):
block = image[y:y + block_size, x:x + block_size, :]
sharpness_vals = []
for c in range(3): # For R, G, B channels
channel = block[..., c]
lap_var = cv2.Laplacian(channel, cv2.CV_64F).var()
sharpness_vals.append(lap_var)
# Use average sharpness across color channels
heatmap[y // block_size, x // block_size] = np.mean(sharpness_vals)
print(heatmap)
# Threshold the heatmap to create a binary mask (blurred regions)
mask = heatmap < threshold
mask = (mask * 255).astype(np.uint8) # Convert to binary mask (0, 255)
# Display Heatmap
plt.subplot(1, 2, 1)
plt.imshow(heatmap, cmap='hot', interpolation='nearest')
plt.title("Sharpness Heatmap")
plt.colorbar(label='Sharpness')
# Display Smoothed Mask
plt.subplot(1, 2, 2)
plt.imshow(mask, cmap='gray', interpolation='nearest')
plt.title("Smoothed Mask for Blurred Areas")
plt.colorbar(label='Blurred Mask')
plt.tight_layout()
plt.show()
return smoothed_mask
def graininess_heatmap(image, block_size=32, threshold=100):
"""
Compute a graininess heatmap using local variance (texture/noise) over blocks.
No smoothing or blurring is applied.
Args:
image: BGR or RGB image (NumPy array).
block_size: Size of the square block to compute variance (graininess).
Returns:
graininess_map: Heatmap highlighting the graininess (texture/noise) in the image.
"""
if image.ndim != 3 or image.shape[2] != 3:
raise ValueError("Input must be a color image (3 channels)")
h, w, _ = image.shape
graininess_map = np.zeros((h // block_size, w // block_size))
# Calculate variance for each block
for y in range(0, h - block_size + 1, block_size):
for x in range(0, w - block_size + 1, block_size):
block = image[y:y + block_size, x:x + block_size, :]
variance_vals = []
for c in range(3): # For R, G, B channels
channel = block[..., c]
variance = np.var(channel)
variance_vals.append(variance)
# Use average variance across color channels for graininess
graininess_map[y // block_size, x // block_size] = np.mean(variance_vals)
mask = graininess_map < threshold
mask = (mask * 255).astype(np.uint8) # Convert to binary mask (0, 255)
# Display graininess_map
plt.subplot(1, 2, 1)
plt.imshow(graininess_map, cmap='hot', interpolation='nearest')
plt.title("Graininess Heatmap")
plt.colorbar(label='Graininess')
# Display Smoothed Mask
plt.subplot(1, 2, 2)
plt.imshow(mask, cmap='gray', interpolation='nearest')
plt.title("Mask for Blurred Areas")
plt.colorbar(label='Blurred Mask')
plt.tight_layout()
plt.show()
return graininess_map
if __name__ == "__main__":
img_file = "assets/real_test.jpg"
#demo("assets/omas.png")
# deconvolution(img_file, edge_threshold=5)
image = cv2.imread(img_file)
test = graininess_heatmap(image)
heatmap = sharpness_heatmap(image)