import numpy as np from scipy.signal import convolve2d import cv2 import matplotlib.pyplot as plt def show(img): cv2.imshow('image',img.astype(np.uint8)) cv2.waitKey(0) cv2.destroyAllWindows() # Define 2D image and kernel image = cv2.imread('assets/omas.png', 0) image = cv2.resize(image, (200, 200), interpolation= cv2.INTER_LINEAR) kernel = np.array([ [1, 2, 1], [2, 4, 2], [1, 2, 1] ], dtype=np.float32) kernel /= kernel.sum() # Normalize print(kernel) # Perform 2D convolution (blurring) blurred = convolve2d(image, kernel, mode="same", boundary="fill", fillvalue=0) show(image) show(blurred) print("Original image:\n", image) print("\nBlurred image:\n", blurred) print("\nBuilding linear system for deconvolution...") # Image size h, w = image.shape kh, kw = kernel.shape pad_h, pad_w = kh // 2, kw // 2 # Build matrix A and vector b for Ax = b A = [] b = [] for y in range(h): for x in range(w): row = np.zeros((h, w), dtype=np.float32) for ky in range(kh): for kx in range(kw): iy = y + ky - pad_h ix = x + kx - pad_w if 0 <= iy < h and 0 <= ix < w: row[iy, ix] += kernel[ky, kx] A.append(row.flatten()) b.append(blurred[y, x]) A = np.array(A) b = np.array(b) # Solve for the deblurred image deblurred_flat = np.linalg.solve(A, b) deblurred = deblurred_flat.reshape((h, w)) print("\nDeblurred image:\n", np.round(deblurred, 2)) show(deblurred)