import sys import numpy as np import cv2 from PyQt5.QtWidgets import ( QApplication, QWidget, QLabel, QSlider, QVBoxLayout, QHBoxLayout, QGridLayout, QPushButton, QFileDialog ) from PyQt5.QtCore import Qt from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas from matplotlib.figure import Figure import scipy.signal import os os.environ.pop("QT_QPA_PLATFORM_PLUGIN_PATH", None) def generate_kernel(radius, sigma=None): """ Generate a 2D Gaussian kernel with a given radius. Parameters: - radius: int, the radius of the kernel (size will be 2*radius + 1) - sigma: float (optional), standard deviation of the Gaussian. If None, sigma = radius / 3 Returns: - kernel: 2D numpy array of shape (2*radius+1, 2*radius+1) """ size = 2 * radius + 1 if sigma is None: sigma = radius / 3.0 # Common default choice print(f"radius: {radius}, sigma: {sigma}") # Create a grid of (x,y) coordinates ax = np.arange(-radius, radius + 1) xx, yy = np.meshgrid(ax, ax) # Apply the 2D Gaussian formula kernel = np.exp(-(xx**2 + yy**2) / (2 * sigma**2)) kernel /= 2 * np.pi * sigma**2 # Normalize based on Gaussian PDF kernel /= kernel.sum() # Normalize to sum to 1 return kernel class KernelVisualizer(QWidget): def __init__(self, image_path=None): super().__init__() self.setWindowTitle("Gaussian Kernel Visualizer") self.image = None self.load_button = QPushButton("Load Image") self.load_button.clicked.connect(self.load_image) self.radius_slider = QSlider(Qt.Horizontal) self.radius_slider.setRange(1, 30) self.radius_slider.setValue(5) self.sigma_slider = QSlider(Qt.Horizontal) self.sigma_slider.setRange(1, 100) self.sigma_slider.setValue(15) self.radius_slider.valueChanged.connect(self.update_visualization) self.sigma_slider.valueChanged.connect(self.update_visualization) self.kernel_fig = Figure(figsize=(3, 3)) self.kernel_canvas = FigureCanvas(self.kernel_fig) self.image_fig = Figure(figsize=(6, 3)) self.image_canvas = FigureCanvas(self.image_fig) layout = QVBoxLayout() layout.addWidget(self.load_button) sliders_layout = QGridLayout() sliders_layout.addWidget(QLabel("Radius:"), 0, 0) sliders_layout.addWidget(self.radius_slider, 0, 1) sliders_layout.addWidget(QLabel("Sigma:"), 1, 0) sliders_layout.addWidget(self.sigma_slider, 1, 1) layout.addLayout(sliders_layout) layout.addWidget(QLabel("Kernel Visualization:")) layout.addWidget(self.kernel_canvas) layout.addWidget(QLabel("Original and Deconvolved Image:")) layout.addWidget(self.image_canvas) self.setLayout(layout) if image_path: self.load_image(image_path) else: self.update_visualization() def load_image(self, image_path=None): if not image_path: fname, _ = QFileDialog.getOpenFileName(self, "Open Image", "", "Images (*.png *.jpg *.bmp *.jpeg)") image_path = fname if image_path: img = cv2.imread(image_path) if img is not None: self.image = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) self.update_visualization() def update_visualization(self): radius = self.radius_slider.value() sigma = self.sigma_slider.value() / 10.0 kernel = generate_kernel(radius, sigma) # Kernel Visualization self.kernel_fig.clear() ax = self.kernel_fig.add_subplot(111) cax = ax.imshow(kernel, cmap='hot') self.kernel_fig.colorbar(cax, ax=ax) ax.set_title(f"Kernel (r={radius}, σ={sigma:.2f})") self.kernel_canvas.draw() if self.image is not None: kernel_size = 2 * radius + 1 # Apply row-by-row deconvolution deconvolved_image = np.zeros_like(self.image) # Perform row-wise deconvolution with padded kernel for i in range(self.image.shape[0]): padded_kernel = np.pad(kernel, ((0, self.image.shape[1] - kernel_size), (0, 0)), mode='constant') deconvolved_image[i, :], _ = scipy.signal.deconvolve(self.image[i, :], padded_kernel[i, :]) # Perform column-wise deconvolution with padded kernel for j in range(self.image.shape[1]): padded_kernel = np.pad(kernel, ((0, self.image.shape[0] - kernel_size), (0, 0)), mode='constant') deconvolved_image[:, j], _ = scipy.signal.deconvolve(self.image[:, j], padded_kernel[:, j]) deconvolved_image = np.clip(deconvolved_image, 0, 255).astype(np.uint8) # Ensure valid range self.image_fig.clear() ax1 = self.image_fig.add_subplot(121) ax1.imshow(self.image, cmap='gray') ax1.set_title("Original") ax1.axis('off') ax2 = self.image_fig.add_subplot(122) ax2.imshow(deconvolved_image, cmap='gray') ax2.set_title("Deconvolved") ax2.axis('off') self.image_canvas.draw() else: self.image_fig.clear() ax = self.image_fig.add_subplot(111) ax.text(0.5, 0.5, "No image loaded", fontsize=14, ha='center', va='center') ax.axis('off') self.image_canvas.draw() if __name__ == "__main__": image_path = None if len(sys.argv) > 1: image_path = sys.argv[1] # Get image path from command-line argument print(image_path) app = QApplication(sys.argv) viewer = KernelVisualizer(image_path=image_path) viewer.show() sys.exit(app.exec_())