diff --git a/secure_pixelation/__main__.py b/secure_pixelation/__main__.py index cc4b6cd..b8aadd4 100644 --- a/secure_pixelation/__main__.py +++ b/secure_pixelation/__main__.py @@ -4,4 +4,4 @@ from .detect_humans import detect_humans def cli(): print(f"Running secure_pixelation") - detect_humans("assets/human_detection/humans.png") + detect_humans("assets/human_detection/rev1.png") diff --git a/secure_pixelation/detect_humans.py b/secure_pixelation/detect_humans.py index f029e92..02a3c7e 100644 --- a/secure_pixelation/detect_humans.py +++ b/secure_pixelation/detect_humans.py @@ -159,6 +159,9 @@ def detect_human_parts(human: dict, face_padding: int = 20): # indices of the points that seem to be likely correct success_points = [] for i in range(5): + if np.sum(original_points[i]) == 0: + continue + s_count = 0 for j in range(5): d = np.abs(optimized_distances[i][j]) @@ -238,18 +241,18 @@ def detect_human_parts(human: dict, face_padding: int = 20): for point in clean_points: cv2.circle(image, (int(point[0]), int(point[1])), 4, color, -1) - - print("\nOriginal points:") - print(original_points) - print("\nOriginal pairwise distances:") - print(linearize_pairwise_distances(original_points, relative_face_matrix)) - print(f"Optimized rotation vector (axis-angle): {rotation_vector}") - print("\nOptimized points after rotation:") - print(optimized_points) - print("\nOptimized pairwise distances:") - print(optimized_distances) - print(success_points) - print(clean_points) + if valid_face: + print("\nOriginal points:") + print(original_points) + print("\nOriginal pairwise distances:") + print(linearize_pairwise_distances(original_points, relative_face_matrix)) + print(f"Optimized rotation vector (axis-angle): {rotation_vector}") + print("\nOptimized points after rotation:") + print(optimized_points) + print("\nOptimized pairwise distances:") + print(optimized_distances) + print(success_points) + print(clean_points)